Indicators of quantum chaos based on eigenvector statistics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistics and Quantum Chaos

We use multi-time correlation functions of quantum systems to construct random variables with statistical properties that reflect the degree of complexity of the underlying quantum dynamics. PACS numbers: 05.45.+b, 02.50.-r

متن کامل

Semi-Poisson statistics in quantum chaos.

We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of...

متن کامل

Quantum Graphs: Applications to Quantum Chaos and Universal Spectral Statistics

During the last years quantum graphs have become a paradigm of quantum chaos with applications from spectral statistics to chaotic scattering and wave function statistics. In the first part of this review we give a detailed introduction to the spectral theory of quantum graphs and discuss exact trace formulae for the spectrum and the quantum-to-classical correspondence. The second part of this ...

متن کامل

Quantum dissipative chaos in the statistics of excitation numbers.

A quantum manifestation of chaotic classical dynamics is found in the framework of oscillatory number statistics for the model of a nonlinear dissipative oscillator. It is shown that the probability distributions and variances of oscillatory number states are strongly transformed in the order-to-chaos transition. A nonclassical, sub-Poissonian statistics of oscillatory excitation numbers is est...

متن کامل

Eigenvector Statistics of Sparse Random Matrices

We prove that the bulk eigenvectors of sparse random matrices, i.e. the adjacency matrices of ErdősRényi graphs or random regular graphs, are asymptotically jointly normal, provided the averaged degree increases with the size of the graphs. Our methodology follows [6] by analyzing the eigenvector flow under Dyson Brownian motion, combining with an isotropic local law for Green’s function. As an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1990

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/23/20/005